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Abstract

In this paper, a continuous projection method is designed and analyzed. The continuous projection method consists

of a set of partial differential equations which can be regarded as an approximation of the Navier–Stokes (N–S)

equations in each time interval of a given time discretization. The local truncation error (LTE) analysis is applied to the

continuous projection methods, which yields a sufficient condition for the continuous projection methods to be tem-

porally second order accurate. Based on this sufficient condition, a fully second order accurate discrete projection

method is proposed. A heuristic stability analysis is performed to this projection method showing that the present

projection method can be stable. The stability of the present scheme is further verified through numerical experiments.

The second order accuracy of the present projection method is confirmed by several numerical test cases.
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1. Introduction

The difficulty in numerically solving the unsteady incompressible Navier–Stokes (N–S) equations in

primitive variable form arises from the specific velocity–pressure coupling. In the 1960s, Chorin observed

that for incompressible flows, the pressure did not carry any thermodynamic meaning and was presented

only as a Lagrange multiplier to enforce the incompressibility constraint. This observation motivated an

operator-splitting discretization scheme known as the projection method or the fractional step method [5,6],

in which the computations of the velocity and the pressure are decoupled through a two-step predictor–

corrector procedure. In the first step, an intermediate velocity field is computed by solving the momentum
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equations ignoring the pressure term and the incompressibility constraint; in the second step, according to

Helmholtz–Hodge decomposition theorem [11], the intermediate velocity is projected to the space of the

divergence-free vector fields to get the pressure and the corrected velocity that satisfies the incompressibility
condition. Because of the decoupling of the velocity and the pressure computations, the projection method

is much more efficient than the fully coupled procedures. This notable advantage has attracted great at-

tention, and many improved projection methods have been seen in publications [1–4,21,22,33] of the past 20

years. The projection methods are currently among the most popular methods for solving viscous in-

compressible flow based on the primitive variable formulations.

Despite the advantages, the velocity–pressure decoupling adversely affects the temporal accuracy of the

numerical scheme. In previous works [4,9,10,17,29–32,36], many efforts have been devoted to the im-

provement of the temporal accuracy of the projection methods. It has been observed both numerically and
analytically that while a temporally second order convergence for the velocity can be readily obtained, the

computed pressure is typically only first order accurate in time [6]. Some authors have attributed the first

order temporal accuracy to the inappropriate boundary conditions for the intermediate variables

[4,13,17,20–22,25,28], and others speculated that the projection methods are inherently first order in time

for the pressure and cannot be improved to a higher order accuracy [26].

It should be noted that in the construction of the projection or the fractional step schemes, two methods

with subtle differences are often used. The relative new but more straightforward method was due to

Dukowicz and Dvinsky [7], who proposed to construct the fractional step method through the approximate
block LU factorization of the fully discrete incompressible N–S equations written in block matrix form.

This method has been further developed by Perot [26] and others [19,27]. Because of the factorization

nature of this approach, the ‘‘artificial’’ boundary conditions for the intermediate velocity are not required.

Another method, following the original work of Chorin, was to present the projection methods in semi-

discrete formulations with the temporal derivatives being discretized and the spatial derivatives remaining

in their continuous forms. When these semi-discrete formulations are numerically solved after spatial

discretizations, certain ‘‘artificial’’ boundary conditions for the intermediate velocity must be used. These

two approaches are in close relations: the first approach can be used to derive the artificial boundary
conditions needed by the second approach; and the second approach, with different artificial boundary

conditions, can be also regarded as the first method using different approximate block LU factorizations.

Because the second approach is in closer relation to the work that will be presented in the present paper,

and also because the second approach is independent of any particular spatial discrete scheme, the pro-

jection or fractional step methods based on the second approach will be reviewed in a little bit more detail

in the following several passages.

In order to construct higher order projection methods using the second approach, two ingredients should

be regarded: the pressure updating formulation and the artificial boundary conditions. Brown et al. [4] have
pointed out the importance of the pressure updating formulation. By performing the normal mode analysis,

they showed that when a consistent pressure updating formulation was used together with proper boundary

conditions, second order temporal accuracy was able to achieved for both velocity and pressure fields. (In a

general domain, however, 3/2-order accuracy for the pressure appeared to be best possible based on the

results of [17].) When the pressure updating formulation was not consistent with N–S equations, the ve-

locity could still be second order accurate in time, but some pseudo-modes appeared in the pressure field,

which would produce the pressure numerical boundary layer and the resulted pressure field was only first

order in time.
It is well known that the intermediate velocity has not any physical meaning, and requires artificial

boundary conditions. Kim and Moin [22] noticed that the tangential velocity will loss its accuracy near

boundary and produce a numerical boundary layer in their pressure-free projection method when the

boundary conditions used for the intermediate velocity is the same as that for the physical velocity. As a

remedy, a Taylor series expansion technique was used to obtain higher order approximation in tangential
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component of the intermediate velocity on the boundary. After modifying the artificial boundary condi-

tions, second order accuracy for the velocity was obtained, although the first order accuracy for the

pressure remained [4].
Recently, Iannelli and Denaro [20] have analyzed the pressure-free projection method in terms of its

local truncation error (LTE). They concluded that the pressure-free projection method both in continuous

and discrete sense could be inherently second order accurate for the velocity when appropriate boundary

conditions was used, regardless of the pressure accuracy. They also recommended new artificial boundary

conditions by which the velocity could be second order accurate up to the boundaries.

Motivated by these previous works, the temporal accuracy of the projection method is discussed in terms

of LTE analysis technique in the present paper. In the present paper, the analysis is based on the so-called

continuous projection scheme which consists of a set of partial differential equations approximating the
original N–S (or corresponding Stokes) equations to a certain order. This set of equations is designed so

that when it is discretized, the resulting equations are nothing but the standard projection schemes in

discrete forms. The advantage of the continuous projection method is that we can analyze the accuracy of

this method independent of both temporal and spatial discretization procedures. The sound mathematical

behavior of the continuous differential operators also makes it relatively easy to analysis the properties of

the continuous projection method.

The LTE analysis of a general class of continuous projection methods for both the velocity and pressure

fields is carried out in the present paper. We find that the rigorous LTE analysis is possible only under
artificial boundary conditions in specific forms. These specific forms of the artificial boundary conditions

can be used in turn to design higher order projection methods. As a result of this LTE analysis, a class of

fully second order accurate projection methods is developed. The second order accuracy for both the ve-

locity and the pressure fields is verified through numerical tests. A heuristic stability analysis is performed,

which shows that the present projection method can be stable. The stability of the present scheme is further

verified through numerical experiments.

This paper is organized as follows. In Section 2, the continuous projection method is identified and

presented. In Section 3, the LTE analysis of the continuous projection methods is discussed and the ap-
propriate boundary conditions of the intermediate velocity for the fully second order projection methods

are derived. Section 4 presents the numerical discretization of the continuous projection method. A heu-

ristic stability analysis of the discrete projection method is also provided in this section. Section 5 displays

the numerical results and the conclusions are given in Section 6.
2. The continuous projection methods

The unsteady incompressible N–S equations in primitive variable form can be written as

ou

ot
þrp ¼ �ðu � rÞuþ tr2uþ f ; ð1Þ
r � u ¼ 0;

where u, p, t, f are the velocity vector, pressure, kinematic viscosity of the fluid, and body force, respec-

tively. The density is already absorbed in the pressure term and is not shown in Eq. (1). The initial con-
ditions are

uðx; 0Þ ¼ u0;

and the boundary conditions are
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ub ¼ w:

In the projection or the fractional step methods, the convection terms are usually discretized explicitly by,
for example, the Adams–Bashforth scheme [4,9,10,20–22,33]. For simplicity, we omit the convection terms

and consider only the Stokes equations in the present and the following two sections. However, in the

numerical experiments presented in Section 5, the N–S equations are actually solved. It should be noted

that it is a common practice to analyze the temporal accuracy of the projection methods in terms of the

Stokes equations [4]. The results of the LTE analysis can be extended to the N–S equations readily. The

Stokes equations are written in the following form:

ou

ot
¼ tDu�rp þ f ; ð2Þ
r � u ¼ 0; ð3Þ

with the same initial and boundary conditions as the N–S equations.

In this section, the continuous projection method will be identified and presented. In this approach,

giving a discretization in time denoted by tj ¼ jDt ðj ¼ 0; 1; . . .Þ, we will introduce some intermediate

variables and construct a set of partial differential equations which approximates the N–S equations (or the

Stokes equations in this section) to certain order of accuracy within every time interval ½tn; tnþ1�. Because of
the introduction of new variables, the artificial boundary conditions for these variables are needed. The

advantage of this approach is that we can analyze the accuracy of these equations independent of any

spatial and temporal discretization procedures. That is to say, if these equations are the kth order ap-

proximation of the original N–S (or Stokes) equations, then any kth or higher order discretization of them

will approximate the N–S (or Stokes) equations to kth order. The sound mathematical behavior of the

continuous differential operators makes it relatively easy to analysis the properties of these equations. In

this paper, these partial differential equations are designed so that when they are discretized, the resulting

algebraic equations are nothing but the standard projection schemes in discrete forms. Therefore, this
approach is called the continuous projection method in the present paper. We should note that the tem-

poral discretizations of these equations will always be performed between tn and tnþ1. We assume that the

flow variables are known when t6 tn, and the discrete projection method is used to evaluate the flow

variables at time tnþ1.

At each time interval, such as that between tn and tnþ1, we introduce two intermediate variables u� and q,
and require

ou�

ot
¼ tDu� � rqþ f ; ð4Þ

where u� is the intermediate velocity vector and q is an approximation of the pressure p . The initial and

boundary conditions of Eq. (4) are, respectively,

ðu�Þn ¼ ~un ð5Þ

and

u�b ¼ wþrw; ð6Þ

where ~un is the approximate solution of the velocity at the previous time step, and w is an expression in the
boundary conditions with its form to be determined.

Once we have obtained the u� by means of Eqs. (4)–(6), according to the Helmholtz–Hodge theorem [11],

u� can be decomposed into
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u� ¼ ~uþr/; ð7Þ

in which ~u is the solution of the continuous projection method and satisfies

r � ~u ¼ 0: ð8Þ

Eqs. (7) and (8) give a Poisson equation

r2/ ¼ r � u�: ð9Þ

To get the boundary condition of Eq. (9), we consider Eq. (7) on the boundaries

u�b ¼ ~ub þr/b:

It is easy to derive that

r/b ¼ rw� ð~ub � wÞ: ð10Þ

Usually, the normal component of Eq. (10) is chosen as the boundary conditions of Eq. (9) [15,21]. If we

require additionally that

w � n ¼ ~ub � n;

where n is a unit vector normal to the boundaries, the boundary condition for Eq. (9) can be written as

o/b

on
¼ ow

on
: ð11Þ

By solving Eq. (9) with the boundary condition (11), one can get /, and ~u can be obtained accordingly from

Eq. (7).

Plugging Eq. (7) into Eq. (4), the following equation is obtained

o~u

ot
¼ tD~u�r q

�
þ o/

ot
� tD/

�
þ f : ð12Þ

We require that Eq. (12) is consistent with Eq. (2) for arbitrary t ðtn 6 t6 tnþ1Þ, or more specifically, we

regard ~u and ~p as the solutions of

o~u

ot
¼ tD~u�r~p þ f ; ð13Þ

and Eq. (8). Comparing Eq. (12) with Eq. (13), it is clear that ~p has to be computed by

~p ¼ qþ o/
ot

� tD/: ð14Þ

Eq. (14) [34] is called the consistent pressure updating equation. The importance of the consistency in the

pressure updating equation in discrete form has been discussed in [4,16,17].
Eqs. (4), (7), (9) and (14) constitute the governing equations of the continuous projection method. In

Section 3, we will show that with proper artificial boundary conditions, this set of equations is a second

order approximation of the original Stokes equations.

Remark. The continuous projection method is in close relation with the gauge method [8,24,35]. In fact, if

u� and / are taken as the auxiliary field and the gauge variable (denoted by a and u), respectively, the
governing equations of the continuous projection method are quite similar to those of the gauge method.

However, there are some differences between these two methods.
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The first and the most important difference is that the equations of the continuous projection method are

defined locally within a time step. Therefore, the u� and /, computed in t 2 ½tn; tnþ1�, takes effect only within

½tn; tnþ1�, and can be discarded when we move to the next step, where t 2 ½tnþ1; tnþ2� . On the other hand, in
the gauge method, the gauge variables are defined globally over the whole time domain. In this sense,

continuous projection method can be regarded as a local or adaptive gauge method. The solution proce-

dures of both the continuous projection method and the gauge method can be illustrated in Fig. 1, in which

three solid curves u, ~u and a denote exact velocity, velocity obtained using the projection method and the

gauge variable of the gauge method, respectively. It can be seen that, at every time step, for example at

t ¼ tn, we have in fact two intermediate velocity fields and two potentials: the overbared u� and /, ð�u�Þn and
�/n, are the solutions of the continuous projection method when t 2 ½tn�1; tn�; and the underlined u� and /,
ðu�Þn and /n, are the initial conditions of the continuous projection method when t 2 ½tn; tnþ1�, which satisfy
ðu�Þn ¼ ~un and r/n ¼ 0, respectively. It is clear that, unlike the auxiliary field a in gauge method, u� never
deviates much from the divergence-free velocity field in the continuous projection method.

The second and less important difference between these two methods is that the gauge method is a

pressure-free method in which the pressure is not needed in the solution procedure. However, the con-

tinuous projection method can be both pressure-free when q ¼ 0 or in incremental-pressure form when q
approximating the pressure to a certain degree.
3. The fully second order accurate continuous projection methods

3.1. The LTE analysis of the continuous projection method

At time interval between tn and tnþ1, we denote the exact solutions of Eqs. (2) and (3) as ue ¼ uðtn þ eÞ
and pe ¼ pðtn þ eÞ, and the solutions of continuous projection methods as ~ue ¼ ~uðtn þ eÞ and ~pe ¼ ~pðtn þ eÞ,
where 06 e6Dt ¼ tnþ1 � tn. Setting
Fig. 1. The diagram showing the solution procedures of the continuous projection method and the gauge method.
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~uðtnÞ ¼ uðtnÞ; ~pðtnÞ ¼ pðtnÞ;

the local truncation errors of velocity and pressure can be defined, respectively, by

eu ¼ ue � ~ue ¼ ue � u�;e þr/e; ð15Þ
and

ep ¼ pe � ~pe ¼ pe � qe � o/e

ot
þ tD/e: ð16Þ

Assuming the solutions are smooth enough, the Taylor series expansion can be applied to ue, pe and u�;e

at t ¼ tn:

ue ¼ un þ e _un þ e2

2
€un þOðe3Þ; ð17Þ
pe ¼ pn þ e _pn þOðe2Þ; ð18Þ
u�;e ¼ ðu�Þn þ eð _u�Þn þ e2

2
ð€u�Þn þOðe3Þ: ð19Þ

According to Eq. (2), _un and €un can be reformulated as

_un ¼ tDun �rpn þ f n;
€un ¼ t2D2un � tDðrpn � f nÞ � r _pn þ _f n:

Inserting _un and €un into Eq. (17), we can get

ue ¼ 1

�
þ etDþ e2

t2

2
D2

�
un � e 1

�
þ et

2
D
�
ðrpn � f nÞ � e2

2
ðr _pn � _f nÞ þOðe3Þ: ð20Þ

Similar to _un and €un, variables ðu�Þn, ð _u�Þn and ð€u�Þn can be written as

ðu�Þn ¼ un;
ð _u�Þn ¼ tDun �rqn þ f n;
ð€u�Þn ¼ t2D2un � tDðrqn � f nÞ � r _qn þ _f n;

respectively. After substituting the corresponding terms in Eq. (19) by the equations above, the interme-

diate velocity can be estimated by

u�;e ¼ 1

�
þ etDþ e2

t2

2
D2

�
un � e 1

�
þ et

2
D
�
ðrqn � f nÞ � e2

2
ðr _qn � _f nÞ þOðe3Þ: ð21Þ

Since qe is an estimation of pe, it can be expanded at t ¼ tn in the following form:

qe ¼ a0pn þ a1e _pn þOðe2Þ; ð22Þ

where ai are coefficients corresponding to a specific choice of qe. It is apparent that

qn ¼ a0pn; _qn ¼ a1 _pn:
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Inserting these terms into Eq. (21), we get

u�;e ¼ 1

�
þ etDþ e2

t2

2
D2

�
un � e 1

�
þ et

2
D
�
ða0rpn � f nÞ � e2

2
ða1r _pn � _f nÞ þOðe3Þ: ð23Þ

Using Eqs. (20)–(23), the LTEs defined in Eqs. (15) and (16) can be expressed by

eu ¼ eða0 � 1Þrpn þ e2

2
ða0
h

� 1ÞtDrpn þ ða1 � 1Þr _pn
i
þr/e þOðe3Þ; ð24Þ
ep ¼ ð1� a0Þpn þ eð1� a1Þ _pn þ tD/� o/e

oe
þOðe2Þ: ð25Þ

It is clear that a rigorous LTE analysis is possible only after an estimation of /e is available. Substituting

Eq. (23) into Eq. (9), and taking Eqs. (8) and (20) into consideration, we arrive at

r � r/e ¼ er � ð1
n

� a0Þrpn þ e
2

ð1
h

� a0ÞtDrpn þ ð1� a1Þr _pn
io

þOðe3Þ: ð26Þ

The boundary condition is

o/e
b

on
¼ owe

on
: ð27Þ

For arbitrary we in Eq. (27), it is difficult to get a close form estimation of /e according to Eq. (26). Hence,

in order to get a rigorous LTE estimation, we must be specified appropriately. The most obvious choice is

rwe ¼ e ð1
n

� a0Þrpn þ e
2

ð1
h

� a0ÞtDrpn þ ð1� a1Þr _pn
io

b
þOðe3Þ:

Then the boundary condition of Eq. (11) will be expressed as

n � r/e
b ¼ n � rwe ¼ n � eð1

�
� a0Þrpn þ e2

2
ð1
h

� a0ÞtDrpn þ ð1� a1Þr _pn
i�

b

þOðe3Þ: ð28Þ

Considering Eqs. (26) and (28), /e can be expressed in the following form (omitting the constant):

/e ¼ eð1� a0Þpn þ
e2

2
ð1
h

� a0ÞtDpn þ ð1� a1Þ _pn
i
þOðe3Þ: ð29Þ

Using Eqs. (15), (16) and (29), we get the LTEs of velocity and pressure for the continuous projection

methods

eu ¼ Oðe3Þ; ep ¼ Oðe2Þ;

which are sufficient for the continuous projection methods to be second order accurate in time for both the
velocity and the pressure. This fact leads to the following theorem.

Theorem. If the guessed pressure is given by

qe ¼ a0pn þ a1e _pn þOðe2Þ;

then the sufficient condition for the continuous projection methods described in Eqs. (4), (7), (9) and (14) to be

second order accurate in time is
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rwe ¼ e ð1
n

� a0Þrpn þ e
2

ð1
h

� a0ÞtDrpn þ ð1� a1Þr _pn
io

b
þOðe3Þ ð30Þ

in which ai ði ¼ 0; 1Þ can be chosen arbitrarily.

We have therefore obtained a class of fully second order continuous projection schemes in which the

artificial boundary conditions for u�;e are

u�;eb ¼ we þ e ð1
n

� a0Þrpn þ e
2

ð1
h

� a0ÞtDrpn þ ð1� a1Þr _pn
io

b
þOðe3Þ: ð31Þ
3.2. The analysis of the second order continuous projection method

The governing equations and boundary conditions of the fully second order continuous projection

method can be summarized as follows:

ou�

oe
þ a0pn þ a1e _pn � tDu� ¼ f ; ð32Þ
u�b ¼ wþ e ð1
n

� a0Þrpn þ e
2

ð1
h

� a0ÞtDrpn þ ð1� a1Þr _pn
io

b
; ð33Þ
r2/ ¼ r � u�; ð34Þ
o/b

on
¼

o ð1� a0Þepn þ e2

2
ð1� a0ÞtDpn þ ð1� a1Þ _pn
h in o

on

0
@

1
A

b

; ð35Þ
~u ¼ u� � r/; ð36Þ
~p ¼ a0pn þ a1e _pn þ
o/
oe

� tD/: ð37Þ

Because a0 and a1 can be chosen arbitrarily, the equations above constitute a class of fully second order

accurate continuous projection schemes. When a0 ¼ 0 and a1 ¼ 0, the projection method is in the pressure-

free form; otherwise, the projection method is in incremental-pressure form. An important case can be

obtained if we set a0 ¼ 1 and a1 ¼ 1, which is called the second order incremental pressure projection

method in the present paper. In this case, the artificial boundary conditions become very simple:

u�b ¼ w; ð38Þ
o/b

on
¼ 0: ð39Þ

Except this special case, the artificial boundary conditions are rather complex and related to the spatial and/
or temporal derivatives of the pressure at time tn.

It is well known that the boundary conditions and their discretization procedures have important

influence on the stability property of the numerical solution schemes. In this regard, the simpler

boundary conditions, such as Eqs. (38) and (39), are preferred because they will not adversely affect the

stability of the numerical scheme if they are properly discretized. For the continuous projection method,
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Eqs. (32)–(37), the artificial boundary conditions, can be greatly simplified using simple variable trans-

formations. Define

û� ¼ u� � e ð1
n

� a0Þrpn þ e
2

ð1
h

� a0ÞtDrpn þ ð1� a1Þr _pn
io

and

/̂ ¼ /� e ð1
n

� a0Þpn þ
e
2

ð1
h

� a0ÞtDpn þ ð1� a1Þ _pn
io

:

Eqs. (32)–(37) can be rewritten as

oû�

oe
þrðpn þ e _pnÞ � tDû� ¼ f þ e2t

2
D ð1
h

� a0ÞtDrpn þ ð1� a1Þr _pn
i
; ð40Þ
û�b ¼ w; ð41Þ
r2/̂ ¼ r � û�; ð42Þ
o/̂
on

					
b

¼ 0; ð43Þ
~u ¼ û� � r/̂; ð44Þ
~p ¼ pn þ e _pn þ o/̂
oe

� tD/̂þ e2t
2

D ð1
h

� a0ÞtDpn þ ð1� a1Þ _pn
i
: ð45Þ

Neglecting the second order ðOðe2ÞÞ terms, Eqs. (40)–(45) are identical to the second order incremental

pressure projection method ða0 ¼ 1 and a1 ¼ 1 in Eqs. (32)–(37) mentioned above. Therefore, we will

consider the second order incremental pressure projection method only in the following sections without

loss of generality.
4. The second order accurate discrete projection method

4.1. The second order accurate discrete projection method

The continuous second order incremental pressure projection method can be derived by setting a0 ¼ 1

and a1 ¼ 1 in Eqs. (32)–(37):

ou�

oe
þrðpn þ e _pnÞ � tDu� ¼ f ; ð46Þ
u�b ¼ w; ð47Þ
r2/ ¼ r � u�; ð48Þ
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o/b

on
¼ 0; ð49Þ
~u ¼ u� � r/; ð50Þ
~p ¼ pn þ e _pn þ o/
oe

� tD/: ð51Þ

Because these equations are the second order approximation of the Stokes equations, any second order

discretiztions of this set of equations will result in a second order numerical scheme for solving the original

Stokes equations. In the present paper, this set of equations is discretized in time using the Crank–Nich-
olson scheme at tnþ1=2. The spatial derivatives are discretized using the second order central difference

schemes. The resulting finite difference schemes are:

ðu�Þnþ1 � ~un

Dt
þ Gqnþ1=2 � t

2
L½ðu�Þnþ1 þ ~un� ¼ f nþ1=2; ð52Þ
ðu�bÞ
nþ1 ¼ wnþ1; ð53Þ
L/nþ1 ¼ Dðu�Þnþ1
; ð54Þ
d/nþ1
b

dn
¼ 0; ð55Þ
~unþ1 ¼ ðu�Þnþ1 � G/nþ1; ð56Þ
~pnþ1=2 ¼ qnþ1=2 þ /nþ1 � /n

Dt
� t
2
Lð/nþ1 þ /nÞ; ð57Þ

where D, G and L are the second order accurate discrete divergence, gradient and Laplacian operators,

respectively, and qnþ1=2 is a second order approximation of pn þ Dt
2
_pn, which can be evaluated by

qnþ1=2 ¼ 2~pn�1=2 � ~pn�3=2: ð58Þ

In deriving Eq. (52), the relation ðu�Þn ¼ ~un has been used. Using the notation introduced in Section 2, Eq.

(57) is in fact

~pnþ1=2 ¼ qnþ1=2 þ
�/nþ1 � /n

Dt
� t
2
Lð�/nþ1 þ /nÞ:

Sincer/n ¼ ðu�Þn � ~un ¼ 0, we set /n ¼ 0 without loss of generality. Therefore, Eq. (57) can be rewritten as

~pnþ1=2 ¼ qnþ1=2 þ /nþ1

Dt
� t
2
Lð/nþ1Þ: ð59Þ

The boundary condition (55) is implemented by setting suitable values on ghost grid points. For ex-
ample, at the left boundary denoted by (1/2,j) for a two-dimensional rectangular domain, / at ghost grid

point (0,j) can be set to be /0;j ¼ /1;j.
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Remark. The discrete projection method in this paper is identical to Pm II in [4] if Eq. (58) is replaced by

qnþ1=2 ¼ ~pn�1=2. It is clear that Pm II does not satisfy the sufficient condition derived in Section 3.1. The

temporal accuracy of Pm II has been studied in [4,17]. In the periodic semi-infinite strip

X ¼ ½0;1Þ � ½�p; p�, for tP 0, Brown et al. have shown that the Pm II is temporally second order accurate
by normal mode analysis. In general domains, however, Guermond and Shen [17] have found that the

pressure field computed by Pm II is at best temporally 3/2-order accurate. On the other hand, the LTE

analysis in Section 3.1 shows that the present projection method is temporally second order accurate re-

gardless the shape of the computational domain. In Section 5, we will compare the numerical results ob-

tained by the present projection method and Pm II, which show that while the present method is temporally

fully second order accurate, the convergence rate of pressure calculated by Pm II is depended on the type of

boundary conditions. When Dirichlet condition is used on all boundaries, the computed convergence rate

of pressure is around 1.6 which is in accordance with [17].
4.2. Remarks on the stability of the present projection method

In [30], Shen showed that similar second order incremental pressure projection method (the projection-3

scheme in [13,14]) is unconditionally unstable. However, in his analysis, the pressure updating scheme is

different from the present one. The consistent pressure updating formulation, Eq. (14) or (59), turns out to

have favorable effect on the stability property of the numerical scheme, which have been observed in higher

order velocity correction projection schemes [18]. In this subsection, we will show that the present second
order projection scheme can be stable using the same technique of Shen.

Using the notation introduced in Section 2, Eq. (52), can be written as

ð�u�Þnþ1 � ð�u�Þn

Dt
þ Gqnþ1=2 þ G/n

Dt
� t
2
L½ð�u�Þnþ1 þ ð�u�Þn � G/n� ¼ f nþ1=2:

Considering Eq. (59), we have

ð�u�Þnþ1 � ð�u�Þn

Dt
þ G~pnþ1=2 � Gð/nþ1 � /nÞ

Dt
þ t
2
ðGL/nþ1 þ LG/nÞ � t

2
L½ð�u�Þnþ1 þ ð�u�Þn� ¼ f nþ1=2:

ð60Þ

The combination of Eqs. (59) and (58) gives

~pnþ1=2 � 2~pn�1=2 þ ~pn�3=2 ¼ /nþ1

Dt
� t
2
Lð/nþ1Þ: ð61Þ

Eqs. (60) and (61), together with the Poisson equation

L/nþ1 ¼ Dð�u�Þnþ1
; ð62Þ

form a closed set of finite difference equations.

Considering s � Dt ! 0; Dx ! 0, the following singularly perturbed equations in continuous form can

be obtained (note GL ¼ LG when Dx ! 0):

�u�t þrp �rð/t � tD/Þ � tD�u� ¼ f ; ð63Þ
s2ptt ¼ /t � tD/; ð64Þ
D/ ¼ r � �u�: ð65Þ
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Eliminating �u�, p from Eqs. (63)–(65), we have

D/t � tD2/ ¼ s2r � f tt ð66Þ

with boundary condition o/=on ¼ 0.

Let fkn;/ng be the eigenpair of the Laplacian operator with homogeneous Neumann boundary con-

ditions, i.e.

�D/n ¼ kn/n;
o/n

on

� �
b

¼ 0 ð67Þ

with 0 ¼ k0 < k1 < � � � < � � � þ1. We can then expand / and r � f tt of Eq. (66) by using the eigenfunctions

/ ¼
X1
n¼0

cnðtÞ/n; r � f tt ¼
X1
n¼0

dnðtÞ/n: ð68Þ

Substituting Eq. (68) into Eq. (66), we obtain

_cnðtÞ þ tkncnðtÞ ¼ � s2

kn
dnðtÞ 8nP 1: ð69Þ

The general solution of Eq. (69) is of the form

cnðtÞ ¼ Ce�tknt: ð70Þ

We can then conclude that / is uniformly bounded for t 2 ½0;þ1Þ and therefore the singularly perturbed

system is stable.

It should be noted that this analysis cannot be regarded as a rigorous proof of the stability of the discrete
projection scheme because only the continuous singularly perturbed equations are considered. However, it

does indicate that it possible to construct a stable discrete second order projection scheme. The numerical

experiments presented in Section 5 show that the numerical scheme (Eqs. (52)–(58)) is stable under CFL-

like conditions.
5. Numerical tests

In this section, we will apply the proposed projection scheme to numerically simulate four incom-

pressible flow test cases. It should be noted that in this section, the governing equations are the incom-

pressible N–S equations instead of the Stokes equations. The convection terms are discretized spatially with

the second order central difference scheme and temporally with the Adams–Barshforth scheme to ensure

overall second order accuracy. A staggered grid arrangement is used to achieve the grid-level coupling in

the pressure field and to remove the odd–even decoupling.

For a temporally rth order and spatially sth order scheme, the numerical solution can be interpreted as

gni;j ¼ gðxi; yj; tnÞ þ bn
i;jðDtÞ

r þ cni;jðDxÞ
s þ d;

where gni;j and gðxi; yj; tnÞ are the numerical and analytical solutions, respectively. bn
i;jðDtÞ

r
and cni;jðDxÞ

s
are

corresponding to the errors due to temporal and spatial discretizations, and d is the round-off error which is

considered to be much smaller than the discretization errors. To check the temporal accuracy, we first carry

out the computation using a very small time step so that the numerical solution can be approximated by

~gni;j � gðxi; yj; tnÞ þ cni;jðDxÞ
s þ d;
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where ~gni;j is called the reference solution. Then the numerical solutions gni;j are computed with various

computational time steps on the same grid. It is easy to show

kegk ¼ kgn � ~gnk � ðDtÞr;

where eg is called the temporal error in this paper. Therefore, the slope of the kegk � Dt curve in double

logarithm scale can be used to determine the convergence rate as well as the order of temporal accuracy of

the numerical method.

For convenience, we denote the discrete projection method proposed in Section 4.1 by DPM. The

computational results of DPM will be compared with those of Pm II [4] in this section.
5.1. Case 1: doubly periodic shear layer

This test case is taken from [23]. It consists of two jets in a doubly periodic geometry to which a si-

nusoidal perturbation perpendicular to the orientation of the shear layers is imposed at the lowest wave

number supported by the computational mesh. In the absence of any additional perturbations, each of the

shear layers rolls up in a single vortex as the flow evolves. In the periodical two-dimensional computational

domain of size ð0; 1Þ � ð0; 1Þ, the following velocity fields are generated as initial condition:

u ¼ tanhðkðy � 0:25ÞÞ; y6 0:5;
tanhðkð0:75� yÞÞ; y > 0:5;

�

v ¼ c sinð2pðxþ 0:25ÞÞ:

We first consider the ‘‘thick’’ shear layer case with the width parameter k being set to 30. The strength

coefficient c is 0.05 and the Reynolds number is 10,000. The temporal errors of the computed velocity and

pressure in both the 2- and 1-norm at t ¼ 1 are reported in Fig. 2. The second order convergence rate is
observed in both the 2- and the 1-norm. The temporal errors obtained using Pm II are also shown in

Fig. 2. We note that when doubly periodic boundary conditions are used, the computational results of

DPM and Pm II are quite similar. For the ‘‘thin’’ shear layer case with k being 80, Fig. 3 presents the
Fig. 2. Convergence rates of DPM and Pm II at t ¼ 1 on 128� 128 grids for the ‘‘thick’’ shear layer case.



Fig. 3. Contour plots of vorticity (30 isolines) for the ‘‘thin’’ shear layer case, when Re ¼ 10,000 and t ¼ 1. Computational results are

obtained by DMP with Dt=h ¼ 0:25 on 256� 256 grids.
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calculated vorticity field at time t ¼ 1 with Dt=h ¼ 0:25 on a 256� 256 grid, which is similar to the results in

[23].
5.2. Case 2: the forced flow problem 1

In this test case [4], the fluid flows in a channel with periodic boundary conditions in the x-direction. A
no-slip condition is prescribed at y ¼ 0, while a non-trivial slip condition is specified at y ¼ 1. The N–S

equations are augmented with a forcing term in order that the solution is

u ¼ cosð2pðx� xðtÞÞÞð3y2 � yÞ;
v ¼ 2p sinð2pðx� xðtÞÞÞy2ðy � 1Þ;
p ¼ � _xðtÞ
2p

sinð2pðx� xðtÞÞÞðsinð2pyÞ � 2py þ pÞ þ t cosð2pðx� xðtÞÞÞðsinð2pyÞ2py þ pÞ;

where xðtÞ ¼ 1þ sinð2pt2Þ, and the viscosity is set to t ¼ 1. Errors are calculated at the time t ¼ 0:5 on
64� 64 grids.

Fig. 4 displays the errors of the computed velocity and pressure in both the 2- and 1-norm at t ¼ 0:5.
The second order convergence rate is observed for both DPM and Pm II. The error field calculated by

DPM and Pm II for both the velocity and the pressure with Dt=h ¼ 0:5 are shown in Figs. 5 and 6, re-

spectively. No numerical boundary layer is observed for both the velocity and the pressure in the com-

putational results of DPM. We note when the periodic boundary condition is applied in one direction and

Dirichlet boundary conditions are used on other boundaries, both DPM and Pm II achieve the second

order rate of convergence. However, the errors calculated by DPM are significantly smaller than those by
Pm II especially near the boundaries using Dirichlet boundary conditions (y ¼ 0 and y ¼ 1).



Fig. 4. Convergence rates of DPM and Pm II at t ¼ 0:5 on 64� 64 grids when computing case 2.

Fig. 5. The field of eu for case 2 at t ¼ 0:5. The computational result obtained by DMP is denoted by the surface with mesh, and is

compared to the results obtained by Pm II denoted by the shaded surface on 64� 64 grids with Dt=h ¼ 0:5.
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5.3. Case 3: the forced flow problem 2

The third test case is also a forced flow problem [17]. The computational domain is ð0; 1Þ � ð0; 1Þ. The
source term is added to the N–S equations so that the exact solution is

u ¼ p sinðtÞ sin2ð2pxÞ sinð2pyÞ;
v ¼ �p sinðtÞ sinð2pxÞ sin2ð2pyÞ;



Fig. 6. The field of ep for case 2 at t ¼ 0:5. The computational result obtained by DPM is denoted by the surface with mesh, and is

compared to the results obtained by PM II denoted by the shaded surface on 64� 64 grids with Dt=h ¼ 0:5.
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p ¼ sinðtÞ cosðpxÞ cosðpyÞ:

Dirichlet boundary conditions are applied at all boundaries. The viscosity is t ¼ 1. The errors are calculated

at t ¼ 1 on the same grids as in case 2.

In Fig. 7, we show the errors of the velocity and the pressure in both the 2- and the 1-norm at t ¼ 1

using different time steps. The velocity fields again exhibit the second order convergence rates for both

DPM and Pm II in the 2-norm as well as the 1-norm. In the present case, the pressure field achieves

surprisingly 2.5th-order rate of convergence using DPM, while the convergence rate of Pm II is around 1.6,
which is in accordance with [17].

The temporal error fields of the velocity and pressure computed using DPM and Pm II on 64� 64 grids

are plotted in Figs. 8 and 9, respectively. Large differences in velocity errors between the numerical results
Fig. 7. Convergence rates of DPM and Pm II at t ¼ 1:0 on 64� 64 grids when computing case 3.



Fig. 8. The field of eu for case 3 at t ¼ 1. The computational result obtained by DMP is denoted by the surface with mesh, and is

compared to the results obtained by Pm II denoted by the shaded surface on 64� 64 grids with Dt=h ¼ 0:5.

Fig. 9. The field of ep for case 3 at t ¼ 1. The computational result obtained by DPM is denoted by the surface with mesh, and is

compared to the results obtained by Pm II denoted by the shaded surface on 64� 64 grids with Dt=h ¼ 0:5.
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of these two schemes appear near the boundaries (y ¼ 0 and y ¼ 1 for u-component in Fig. 8; x ¼ 0 and

x ¼ 1 for v-component, which is not shown in this paper). In Fig. 9, very large pressure errors exit in the

four corners of the computational domain for the Pm II, which is significantly reduced using DPM.

In view of the rate of convergence as well as the temporal errors for the pressure field in cases 1–3, it is

apparent that DPM outperforms Pm II significantly. While the pressure convergence rate of Pm II is closely

related to the type of boundary conditions, DPM exhibit fully temporally second order behaviors in all the

test cases.
5.4. Case 4: lid-driven cavity flows

The ‘lid-driven cavity’ flows have been established as a standard ‘‘benchmark’’ test for numerical

methods of incompressible fluid dynamics. Because the flow field is steady at small Reynolds number, it



Fig. 10. Streamlines of case 4 when Re ¼ 400. Computational results are obtained by DPM with Dt=h ¼ 0:5 on 128� 128 grids.
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cannot be used to test the temporal accuracy of the numerical method. However, it is a good case to ex-

amine the stability property of the present scheme. Fig. 10 depicts the stream lines of the Re ¼ 400 flows in

the driven cavity using grids of 128� 128. The present method accurately reproduces the formation of the

primary and two secondary vortices, with flow structures similar to those given in [12]. Fig. 11 presents a

comparison of the velocity distributions at the horizontal centerline of the cavity that are computed using

DPM1 and the vorticity-stream-function method [12], respectively. The agreement is excellent. Numerical

experiments indicate that DPM1 is stable when CFL ¼ uDt=Dx < 1.
Fig. 11. The v-component velocity profiles at the cavity’s horizontal centerline for case 4 when Re ¼ 400. Computational results are

obtained by DPM and are compared to Ghia’s results [12] on 128� 128 grids.



Fig. 12. Streamlines case 4 when Re ¼ 10,000. Computational results are obtained by DPM with Dt=h ¼ 0:5 on 128� 128 grids.
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To examine the performance of the present method for solving the high Reynolds number flows, the

Re ¼ 10,000 flows in the driven cavity have been computed on the 128� 128 grids. The numerical result of

the stream lines is shown in Fig. 12, the structure of various secondary vortices is in excellent agreement

with that reported in [12]. It has been found numerically that DPM1 is stable when CFL ¼ uDt=Dx < 0:75.
6. Conclusions

In this paper, a continuous projection method is designed and analyzed. The continuous projection

method consists of a set of partial differential equations which can be regarded as an approximation of the

N–S equations in each interval of a given time discretization. The LTE analysis is employed to analyze

continuous projection methods. We find that the rigorous LTE analysis is possible only under artificial

boundary conditions in specific forms. This analysis yields a sufficient condition for the continuous pro-

jection methods to be temporally second order accurate. Based on this sufficient condition, a class of fully
second order accurate continuous projection methods is proposed. The governing equations of the pro-

posed continuous projection method are discretized using second order difference schemes both spatially

and temporally, which results in a fully second order accurate discrete projection scheme. A heuristic

stability analysis is performed to this projection method showing that the present projection method can be

stable. The stability of the present scheme is further verified through numerical tests.

The artificial boundary conditions proposed in this paper ensure the second order accuracy of the ve-

locity and pressure up to the boundary. Therefore, the numerical boundary layer is effectively eliminated.

The second order accuracy of the present projection method is confirmed by several numerical test cases.
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